RTC 300

sCAN

Installation instructions

1. sCAN

1.1 Introduction	3
1.2 Set up and adjust the RTC	4
1.3 RTC 300 wiring	5
1.4 Change the node ID with wires	5
1.5 Set a new zero value with wires	.6
1.6 Changing direction CW/CCW with wires	. 6

1. sCAN

1.1 Introduction

The RTC 300 is 16-bit angle transmitter with CAN bus interface, supporting CANopen.

Connection diagram of 2 XL sCAN (16-bit) indicators and one RTC 300.

1.2 Set up and adjust the RTC

The RTC is a 360° measuring device (encoder). It measures the full \pm 180° represented by a 16-bit signed value transmitted on the CAN bus. The 16-bit data value is placed in bytes of 0 and 1 in TPDO1 of the selected CAN node ID (COB-ID: 0×180+NodeID).

Default settings:

- 1. Node ID 1 = angle data is transmitted in TPDO with COBID 0×181.
- 2. The direction is clockwise (CW). To increase the measured angle value, turn the shaft to the right. To decrease the measured value, turn the shaft to the left.

Pin number Function Note 0 V 1 Supply voltage Consumption max 150 mA. 2 Supply voltage 24 V Consumption max 150 mA. 3* **CAN** connection CAN 1 line (sCAN line). CAN 1 H input 4* CAN connection CAN 1 L input CAN 1 line (sCAN line). 5* **CAN** connection CAN 1 GND CAN 1 line (sCAN line). CAN connection Not used 6 Used for setting of min/ 7 **CAN** connection Switch/button zero/max with external switch. Used for setting of min/ GND 8 CAN connection zero/max with external switch. Dimmer input. Dimmer range 7 Illumination, analogue, 9 NC to 30 V DC. dimmer Consumption max. 30 mA. Dimmer input. Dimmer range 7 Illumination, analogue, Illumination GND 10 to 30 V DC. dimmer Consumption max. 30 mA. Dimmer input. Dimmer range 7 Illumination, analogue, 11 Illumination + to 30 V DC. dimmer Consumption max. 30 mA.

XL sCAN indicator connection

NOTE * CAN 1 GND is a common wire specified in CANopen. It is not a cable shield. If the CAN bus cable does not contain a CAN common wire, then do not connect the CAN 1 GND.

XL wiring

1.3 RTC 300 wiring

Wire	Marking	Signal	Remark	
Blue	0 V	Supply voltage	18 to 32 V DC at max. 60 mA.	
Red	24 V DC	Supply voltage	18 to 32 V DC at max. 60 mA.	
Green	CAN high	CAN bus	Remember to terminate the CAN bus.	
Yellow	CAN low	CAN bus	Remember to terminate the CAN bus.	
White	S1	Setup	Cotur wires	
Grey	S2	Setup	Normal operation: All four	
Pink	S3	Setup	setup wires must be connected to 0 V (blue).	
Brown	S4	Setup		

1.4 Change the node ID with wires

You can change the CAN node ID using the four setup wires in the cable. You can change the ID to a number between 1 and 8.

How to change the CAN node ID

- 1. Remove the 24 V power supply.
- 2. Use the Node ID table below for how to connect the wires for each node ID.
- 3. Make sure that S4 (brown) is open (not connected).
- 4. Apply 24 V power to the RTC and wait 5 seconds (3 to 30 sec).
- 5. Connect S4 (brown) to 0 V (blue) for 5 seconds (3 to 10 sec).
- 6. Disconnect S4 (brown) for more than 1 second. The new CAN node ID is now selected and stored.
- 7. Connect all four setup wires to 0 V (blue). The RTC runs in normal operation mode.

Node ID	S1	S2	S 3	S4	0 V
	White	Grey	Pink	Brown	Blue
1	٠	-	-	-	•
2	-	•	-	-	•
3	٠	•	-	-	•
4	-	-	•	-	•
5	•	-	•	-	•
6	-	•	•	-	•
7	•	•	•	-	•
8	-	-	-	-	•
Normal operation	•	•	•	•	•

Example

To change the CAN node ID to ID 3, connect S1, S2, and 0 V.

NOTE Make sure that the 24 V supply is not interrupted during the last steps in the setup procedure when data is stored. This might damage the RTC.

1.5 Set a new zero value with wires

During normal operation, it is possible to change the angular zero position to be the new angle of the shaft.

- 1. Set the rudder or azimuth transmitter in the physical zero position.
- 2. Disconnect all four setup wires, S1 (white), S2 (grey), S3 (pink), and S4 (brown) from 0 V (blue).
- 3. Connect S1 (white) and S4 (brown) to 0 V (blue) for 5 seconds (3 to 10 sec).
- 4. When both S1 (white) and S4 (brown) are released, the new zero is set.
- 5. Connect all four setup wires to 0 V (blue) and the RTC runs run in normal operation mode.
- **NOTE** Make sure that the 24 V supply is not interrupted during the last steps in the setup procedure when data is stored. This might damage the RTC.

1.6 Changing direction CW/CCW with wires

During normal operation, it is possible to change the measuring direction from CW clockwise (default) to CCW counterclockwise.

CCW counterclockwise

- 1. Disconnect all four setup wires from 0 V (blue).
- 2. Connect S3 (pink) and S4 (brown) to 0 V (blue) for 5 seconds (3 to 10 sec).
- 3. When both S3 (pink) and S4 (brown) are released, the encoder is in CCW mode.
- 4. Connect all four setup wires to 0 V (blue), and the RTC runs in normal operation mode.

CW clockwise

- 1. Disconnect all four setup wires from 0 V (blue).
- 2. Connect S2 (grey) and S4 (brown) to 0 V (blue) for 5 seconds (3 to 10 sec).
- 3. When both S2 (grey) and S4 (brown) are released, the encoder is in CW mode.
- 4. Connect all four setup wires to 0 V (blue), and the RTC runs run in normal operation mode.
- **NOTE** Make sure that the 24 V supply is not interrupted during the last steps in the setup procedure when data is stored. This might damage the RTC.