
ML 300
Multi-line 300 platform

CODESYS guidelines

4189341175C

1. Introduction
1.1 About this document...4

1.1.1 Document overview..4
1.1.2 Software versions...4
1.1.3 Technical support...4

1.2 Warnings and safety...5
1.2.1 CustomLogic not available..5
1.2.2 Recommendations for data security...5

1.3 Legal information..5
1.3.1 Disclaimer..5
1.3.2 Trademark..5
1.3.3 Copyright..5

2. Get started with CODESYS
2.1 Multi-line 300 CODESYS functions.. 6

2.1.1 Multi-line 300 CODESYS functions...6

2.2 Software requirements..6
2.2.1 Software requirements...6

2.3 Download..7
2.3.1 Downloading the DEIF CODESYS software package...7
2.3.2 DEIF CODESYS software package contents..7
2.3.3 Download the DEIF CODESYS library package..8
2.3.4 DEIF CODESYS library package contents...8

2.4 Install...8
2.4.1 Install CODESYS Runtime on the controller..8
2.4.2 Install the device description in CODESYS.. 9
2.4.3 Install the ML 300 controller libraries in CODESYS..11

3. ML 300 CODESYS projects
3.1 Introduction... 13

3.1.1 Introduction..13

3.2 Create a new project...13
3.2.1 Create a project file..13
3.2.2 CODESYS layout...14
3.2.3 Add the Multi-line 300 libraries to your application..16

3.3 Add the ML 300 function block..17
3.3.1 Introduction...17
3.3.2 Create a continuous function chart program..18
3.3.3 Add the ML 300 Read-Write function block... 20
3.3.4 Add the ML 300 Read and ML 300 Write function blocks..22
3.3.5 ML300 function blocks' execution position...25
3.3.6 ML 300 function blocks' inputs and outputs.. 27

3.4 Communication with the controller.. 29
3.4.1 Introduction..29
3.4.2 Create a local gateway...30
3.4.3 Connect to the controller..32

3.5 Download the application to the controller..34
3.5.1 Pre-compile the application..34
3.5.2 Generate and download the application...34

Multi-line 300 CODESYS guidelines 4189341175C EN Page 2 of 90

3.5.3 Start and stop the application..35

3.6 Monitor the application...36
3.6.1 Introduction..36
3.6.2 Monitor in the working area...36
3.6.3 Monitor in watch windows..38
3.6.4 Write and force variables...41

4. Function blocks
4.1 Version function block...43

4.1.1 Introduction...43
4.1.2 Add a version function block..43
4.1.3 Card_info function block overview..45
4.1.4 Software_info function block overview..46
4.1.5 Versions function block overview..47

4.2 I/O function block...48
4.2.1 Introduction..48
4.2.2 Add an I/O function block...49
4.2.3 Assign a CODESYS I/O function in the controller.. 52

4.3 Standard ML 300 functions...55
4.3.1 Introduction..55
4.3.2 Add standard ML 300 functions function blocks...55
4.3.3 Function conflicts...57
4.3.4 Alarm function block overview...59
4.3.5 Parameter function block overview...60

5. Extended ML 300 controller functionality
5.1 Create a multiple ring network..65

5.1.1 Introduction...65
5.1.2 Requirements...65
5.1.3 Configure a Top Unit controller...65

5.2 Inter-controller communication..68
5.2.1 Introduction..68
5.2.2 Add an ICC output function block..69
5.2.3 Add an ICC input function block...71

6. Additional libraries
6.1 Introduction...75
6.2 Custom parameters...75

6.2.1 Setup BOOL function block...75
6.2.2 Setup float/integer function block..78
6.2.3 Setup read function block...82
6.2.4 Setup write function block... 86

6.3 Assign a CODESYS I/O function in the controller...90

Multi-line 300 CODESYS guidelines 4189341175C EN Page 3 of 90

1. Introduction

1.1 About this document

1.1.1 Document overview

This document explains how to:

• Download and install the Multi-line 300 (ML 300) CODESYS package on the DEIF controller and in the CODESYS
Development system (CODESYS).

• Create a new CODESYS project for the ML 300 controller.
• Add DEIF-specific function blocks to the program to customise your DEIF controller.
• Download and run the program on the controller.
• Monitor the program through CODESYS.

This document assumes the reader is familiar with CODESYS, and only explains concepts about CODESYS to allow the
reader to start programming a CODESYS project for a DEIF ML 300 controller.

All references to CODESYS in this manual were made using CODESYS V3.5 SP10.

To avoid compatibility problems, create and save your CODESYS projects as Project files (CODEYS V3.5 SP10)(*.project).

1.1.2 Software versions

The information in this document corresponds to the following software versions.

Table 1.1 Software versions

Product Software Details Version

CODESYS IDE External CODESYS project creator V3.5 SP10

Generator paralleling
controller 300 (GPC 300) PCM APPL Controller application 1.0.0.x and higher

Paralleling and protection
unit 300 (PPU 300) PCM APPL Controller application 1.0.3.x and higher

1.1.3 Technical support

You have the following options if you need technical support:

Table 1.2 Support for CODESYS, general

Type of support Notes

CODESYS Store

General CODESYS support:
• My question: Ask questions about CODESYS.
• FAQ: Frequently asked questions.
• Forum: Discuss different CODESYS topics with other users.

CODESYS Development System online help Online help is available from the Help menu.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 4 of 90

Table 1.3 Support for CODESYS, DEIF-specific

Type of support Notes

Technical
documentation

Download all the product technical documentation from the DEIF website: www.deif.com/
documentation.
Refer to the Designer's handbook of your controller for more information about the product
functions and parameters.

Support
DEIF offers 24-hour support.
See www.deif.com for contact details and to find a DEIF subsidiary located near you.
You can also e-mail support@deif.com.

Training DEIF regularly offers training courses at the DEIF offices worldwide.

Service DEIF engineers can help with design, commissioning, operating and optimisation.

1.2 Warnings and safety

1.2.1 CustomLogic not available

When the CODESYS package is installed on a controller, CustomLogic is not available on that controller.

In PICUS, the CustomLogic icon in the right side panel under the Configuration menu is unavailable after you installed
CODESYS on the controller and you logged out of the controller.

1.2.2 Recommendations for data security

To minimise the risk of data security breaches DEIF recommends to:

• As far as possible, avoid exposing controllers and controller networks to public networks and the Internet.
• Use additional security layers like a VPN for remote access, and install firewall mechanisms.
• Restrict access to authorised persons.

1.3 Legal information

1.3.1 Disclaimer

DEIF A/S reserves the right to change any of the contents of this document without prior notice.

The English version of this document always contains the most recent and up-to-date information about the product. DEIF
does not take responsibility for the accuracy of translations, and translations might not be updated at the same time as the
English document. If there is a discrepancy, the English version prevails.

1.3.2 Trademark

DEIF is a trademark of DEIF A/S.

CODESYS
®

 is a registered trademark of 3S-Smart Software Solutions GmbH.

Windows
®

 is a registered trademark of Microsoft Corporation in the United States and other countries.

All trademarks are the properties of their respective owners.

1.3.3 Copyright

© Copyright DEIF A/S. All rights reserved.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 5 of 90

http://www.deif.com/documentation
http://www.deif.com/documentation
http://www.deif.com/

2. Get started with CODESYS

2.1 Multi-line 300 CODESYS functions

2.1.1 Multi-line 300 CODESYS functions

Functions

Runtime • CODESYS Runtime runs with real-time behaviour.

Task configuration

• Configure custom routines:
◦ Function block diagram
◦ Structured text
◦ Ladder logic diagram
◦ Continuous function chart

Function blocks

• Controller overview:
◦ CODESYS application status check
◦ CODESYS communication error overview
◦ Controller application version check

• Live data
• Standard ML 300 controller functions:

◦ Protections (based on controller type)
◦ Controller inputs and outputs (based on controller type)

• Controller status:
◦ Controller status text
◦ Controller pop-up text

Communication

• Configure the controller as a Modbus server or Modbus client.
• Configure the controller as a CANopen master or a CANopen slave.
• Raw CAN communication possible.
• Inter-controller communication that integrates with Custom Logic:

◦ 16 outputs per controller
◦ 16 inputs from each controller in the system

Other

• 40 customisable inputs for each input type:
◦ Digital input
◦ Analogue input

• 40 customisable outputs for each output type:
◦ Digital output
◦ Analogue output

2.2 Software requirements

2.2.1 Software requirements

Table 2.1 CODESYS requirements

Component Requirement(s) Notes

Operating system Windows XP Or higher.

Processor Dual-core

Memory 4 GB RAM

Multi-line 300 CODESYS guidelines 4189341175C EN Page 6 of 90

Component Requirement(s) Notes

Free disk space 2 GB

Network interface Network adaptor with 1 free Ethernet
port

To connect your computer to the
controller.

Table 2.2 Additional requirements

Component Requirement(s) Notes

Additional software PICUS
To install or update CODESYS on the
controller. Download from
www.deif.com.

Code size Less than 20 MB.
The CODESYS application developer
must ensure that the CODESYS code is
within this limit.

2.3 Download

2.3.1 Downloading the DEIF CODESYS software package

To use a CODESYS program on a DEIF controller you have to install the DEIF CODESYS application software (.packet-file) on
the controller. You also need to add the Multi-line 300 to the CODESYS device repository. The DEIF CODESYS application
software and the Multi-line 300 device description are bundled together in the DEIF CODESYS software package. You can
download the DEIF CODESYS software package by submitting your email address via the DEIF website. A link is sent to you
to download the CODESYS software package.

To download the DEIF CODESYS software package follow these steps:

1. Visit the DEIF website at: www.deif.com.

2. Open the search bar , and start to type the controller name to open a list of product options.
3. Select the controller from the list displayed.
4. Scroll down to the product Description, and select the Software tab.
5. Open the CODESYS list, and select Multi-line 300 CODESYS add-on v 1.x.x.
6. Submit your email address to receive a download link to the software.

•
7. Follow the link in the email to download the DEIF CODESYS software package to your computer.

2.3.2 DEIF CODESYS software package contents

The DEIF CODESYS software package includes:

• The ".packet"-file for the installation of CODESYS Runtime on an ML 300 controller.
• The CODESYS device description file to add the Multi-line 300 to the CODESYS device repository.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 7 of 90

http://www.deif.com
http://www.deif.com

CAUTION
You are not allowed to modify the device description file provided by DEIF A/S in any way. Modification of the file
can lead to unexpected behaviour of the software and the protections provided by the Multi-line 300 platform.

2.3.3 Download the DEIF CODESYS library package

To use the DEIF controller functions in CODESYS you need to install the DEIF CODESYS library for your controller in
CODESYS. You can download the DEIF CODESYS library package by submitting your email address via the DEIF website. A
link is sent to you to download the DEIF CODESYS library package.

To download the DEIF CODESYS library package follow these steps:

Added

1. Visit the DEIF website at: www.deif.com.

2. Open the search bar , and start to type the controller name to open a list of product options.
3. Select the controller from the list displayed.
4. Scroll down to the product Description, and select the Software tab.
5. Open the CODESYS list, and select [Product] CODESYS libraries, where [Product] is the product abbreviation (for

example, GPC 300).
6. Submit your email address to receive a download link to the software.

•
7. Follow the link in the email to download the DEIF CODESYS library package to your computer.

2.3.4 DEIF CODESYS library package contents

The DEIF CODESYS library package includes:

• The libraries for each controller type of the specific ML 300 product.

NOTE An example of an ML 300 product is the GPC 300. An example of a controller type for the product is a GPC 300
GENSET controller.

2.4 Install

2.4.1 Install CODESYS Runtime on the controller

To install CODESYS Runtime on your controller, use the Update firmware feature in PICUS. Update the controller firmware
with the ".packet"-file that you received from the ML 300 CODESYS software package download. The ".packet"-file must be
installed on every controller in your system that you need to use CODESYS on.

NOTE It is only possible to install CODESYS on an ML 300 controller, if the controller has a CODESYS license installed on
the controller. If your controller does not have a CODESYS license, you can purchase an ML 300 controller from
DEIF with a CODESYS license.

More information
See Firmware, Tasks, Install firmware in the PICUS manual for more information about installing firmware on the
controller.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 8 of 90

http://www.deif.com

2.4.2 Install the device description in CODESYS

For CODESYS to recognise the DEIF Multi-line 300 controller, you must install the Multi-
line_300_CODESYS_PCM31.devdesc.xml description file in the CODESYS Runtime Environment.

Follow these steps to install the Multi-line 300 device description file in CODESYS:

1. Go to Tools > Device Repository….
2. Select Install… from the Device Repository window:

•
3. Select and open the Multi-line_300_CODESYS_PCM31.devdesc.xml file:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 9 of 90

•
4. The DEIF controller is now available in the CODESYS device repository:

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 10 of 90

2.4.3 Install the ML 300 controller libraries in CODESYS

To add the DEIF libraries to a CODESYS project, you must install the DEIF libraries in the CODESYS library repository. As a
minimum you must install:

• The Multiline_300_pcm31.compiled-library
• The Multiline_300_io.compiled-library
• The controller type library for your controller type

More information
See Get started with CODESYS, Download for more information about downloading the CODESYS library package
for DEIF controllers.

Follow these steps to install the controller libraries in CODESYS:

1. Go to Tools > Library Repository….
2. Select Install… from the Library Repository window:

•
3. Select all the controller library files, then select Open:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 11 of 90

•
4. The ML 300 controller libraries are now available in the CODESYS library repository:

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 12 of 90

3. ML 300 CODESYS projects

3.1 Introduction

3.1.1 Introduction

This chapter describes how to prepare a new CODESYS project for an ML 300 controller. It describes how to:

• Create a new project.
• Add the ML 300 function block.
• Establish communication between CODESYS and the controller.
• Download your program to the controller.
• Monitor the running program on the controller.

NOTE The descriptions in this chapter refer to the default configuration of the user interface provided with CODESYS
V3.5 SP10.

3.2 Create a new project

3.2.1 Create a project file

The following steps describe how to start a new project in the CODESYS user interface.

Follow these steps to create a new CODESYS project:

1. Go to File > New Project….
2. Select Standard project in the Templates field and enter a Name and a Location path for the project file:

•
• Select OK to continue.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 13 of 90

3. In the Standard Project window select Multi-line300 PCM 3.1 (DEIF A/S) as the device and select a programming
language:

•
• The selected programming language is the programming language for the starting Program Organization Unit (POU).
• New POUs can use a different programming language.
• Select OK to continue.

4. The CODESYS project is ready to be programmed:

•

Save your CODESYS projects as Project files (CODEYS V3.5 SP10)(*.project).

3.2.2 CODESYS layout

The image below shows the terminology used for the project view throughout the CODESYS manual.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 14 of 90

Figure 3.1 CODESYS project overview

No. Item Notes

1. Project tree

The project tree is an overview of your project. A typical project will consist
of:
• One or more devices (ML 300 controllers).
• One or more applications containing the Libraries, POUs and tasks.

2. PLC Logic node A PLC Logic node shows that the device is a programmable device and has
no other functions associated to it.

3. Library manager

The Library manager contains the libraries for the project. Each library
consists of functions and function blocks that can be used in your programs.

Add the Multi-line 300 PCM 3.1, Multi-line 300 I/O, and the library for your
controller type to the Library manager to be able to use the controller
functions and function blocks in your program.

4. Devices tab The Devices tab gives you quick access to the project tree.

5. POUs tab The POUs tab gives you quick access to the project settings menu.

6. Working area

The working area consists of tabs representing different parts of the project.
Each tab contains different parts of the project. These project parts can be
opened from the project tree.

The picture above shows the working area for the POU, PLC_PRG. The
working area for this POU consists of a declaration workspace, an
implementation workspace and a toolbox menu.

7. Declaration workspace The declaration workspace consists of the variables for the POU functions.

8. Additional toolboxes Some POUs have additional toolboxes that help you to build your program.

9. Implementation workspace The implementation workspace is used to program your POU.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 15 of 90

3.2.3 Add the Multi-line 300 libraries to your application

The ML 300 controller libraries must be installed in CODESYS before you can add them to your application.

More information
See Get started with CODESYS, Install, Install the ML 300 controller libraries in CODESYS for more information
about how to install the ML 300 controller libraries.

The following libraries have to be added to your application:
• Multi-line 300 PCM 3.1
• Multi-line 300 I/O
• A controller-specific library

NOTE Only add the controller-specific library to the application for the specific controller you are connected to. For
example, select the Multi-line 300 GPC - Genset [DG] for a GPC 300 GENSET controller. More than one controller-
specific library can be added, but this is not recommended.

Follow these steps to add the ML 300 libraries to your application:

1. Double-click on Library Manager in the project tree to open the Library Manager in the working area:

•
2. Select Add Library:

•
3. Select the Multi-line 300 PCM 3.1 library under (Miscellaneous):

Multi-line 300 CODESYS guidelines 4189341175C EN Page 16 of 90

•
• Select OK.

4. Repeat Step 3 for the Multi-line 300 I/O library and the controller-specific library (for example, Multi-line 300 GPC -
Genset [GB]).

5. The ML 300 controller libraries for your product are now available in the Library Manager:

•

3.3 Add the ML 300 function block

3.3.1 Introduction

To run your program on an ML 300 controller with CODESYS installed, your program must contain the ML 300 function
block in a Program POU. This function block tells the controller that there are no errors with CODESYS, and starts and
checks the link between the program and the controller.

If you have multiple POUs in your program, then you can include the ML 300 function block in only one of the POUs.
Remember to link the POU containing the ML 300 function block to the MainTask.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 17 of 90

The ML 300 function block must be the first item in the execution order, because it checks if the status of the CODESYS
program on the controller.

3.3.2 Create a continuous function chart program

To add the ML 300 function block to your application, you must have a Program POU that uses the continuous function
chart programming language.

Follow these steps to add the required POU to your Application:

1. Right-click on Application in the project tree and select Add Object > POU....
2. Enter a name for the POU in the Name: field, set the Type to Program and select Continuous Function Chart (CFC) as

the Implementation language. Select Add to continue.

•
3. The POU has been added to your application:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 18 of 90

•
4. Drag the POU to MainTask in the function tree, to add the POU to the application's Task configuration.

•
5. The POU is now ready to be used in the application for the controller.

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 19 of 90

3.3.3 Add the ML 300 Read-Write function block

The ML 300 Read-Write function block which reads and writes data at the same time during a scan. This can be useful
when you don't have heavy data processing that needs to be written to the controller at the end of the scan that the data
was processed.

NOTE You can only add one ML 300 Read-Write function block to a Device. If you add an ML 300 Read-Write function
block, you cannot add an ML 300 Read and/or ML 300 Write function block to the same Device.

Follow these steps to add the ML 300 Read-Write function block to a Program POU using the continuous function chart
programming language:

1. Double-click on the continuous function chart POU in the project tree to open the program in the working area:

•
2. Drag a Box from the ToolBox to the implementation part of the working area:

•

3. Select ??? in the Box and then select to open the Input Assistant window:

•
4. Go to Categories > Functionblocks > MULTILINE_300 > Main and select the ML300_read_write function block:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 20 of 90

•
• Select OK.

5. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare
the variables as they are shown:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 21 of 90

•
6. The Multi-line 300 Read-Write function block has been added to the project:

•
• Remember to assign an Input to the CODESYS_application_OK input on the ML 300 Read-Write function block.

3.3.4 Add the ML 300 Read and ML 300 Write function blocks

You can add the ML 300 Read and ML 300 Write functions blocks to your program to give you more flexibility in the PLC
sequence. In contrast to the ML 300 Read-Write function block which reads and writes data at the same time during a scan,
using separate read and write function blocks allows the PLC to read data at the beginning of a scan, process the data, and
then write the data at the end of the scan.

NOTE You can only add one ML 300 Read and one ML 300 Write function block to a Device. If you add the ML 300 Read
and ML 300 Write function blocks, you cannot add an ML 300 Read-Write function block to the same Device.

NOTE When you add the ML 300 Read function block, you must also add the ML 300 Write function block. When you add
an ML 300 Write function block, you must also add an ML 300 Read function block.

Follow these steps to add the ML 300 Read and ML 300 Write function blocks to a Program POU using the continuous
function chart programming language:

1. Double-click on the continuous function chart POU in the project tree to open the program in the working area:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 22 of 90

•
2. Drag a Box from the ToolBox to the implementation part of the working area:

•

3. Select ??? in the Box and then select to open the Input Assistant window:

•
4. Go to Categories > Functionblocks > MULTILINE_300 > Main and select the ML300_read function block:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 23 of 90

•
• Select OK.

5. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare
the variables as they are shown:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 24 of 90

•
6. Repeat steps 2 to 5 to add the ML300_write function block.
7. The Multi-line 300 Read and Multi-line 300 Write function blocks have been added to the project:

•
• Remember to assign an Input to the CODESYS_application_OK input on the ML 300 Write function block.
• The ML 300 Read function block must always be first in the execution order list (execution order number zero).
• The ML 300 Write function block must always be last in the execution order list (highest execution order number).

3.3.5 ML300 function blocks' execution position

If the ML300 Read-Write function block is used in the application, then it must be the first item to execute in the application.
If the ML300 Read and ML300 Write function blocks are used in the application, then the ML300 Read function block must
be the first item to execute in the application. The ML300 Write function block must always be the last item to execute in
the application.

The position of the function block in the execution order is shown in the upper-right corner of the function block in a green
box. The execution order list's numbering starts at zero.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 25 of 90

Figure 3.2 ML300 Read-Write function block with execution order zero

To set the function block to the first item in the execution order, right-click on the function block, and select Execution
Order > Send To Front.

To set the function block to the last item in the execution order, right-click on the function block, and select Execution
Order > Send To Back.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 26 of 90

3.3.6 ML 300 function blocks' inputs and outputs

The ML300 function blocks give a status overview of the controller. The function blocks consists of following inputs and
outputs:

Input or output ML300_read_write ML300_read ML300_write

Codesys_application_OK

Timeout_cycles

Link_OK

Error_code

Config_conflict_error_count

Config_conflict_errors

Codesys_application_OK
This input shows whether the CODESYS application is running on the ML 300 controller. The CODESYS application can, for
example, not be running because the CPU is overloaded, or because there is a failure in the program.

This input is connected to the CODESYS application not OK alarm in the controller. If the CODESYS application not OK alarm
is enabled on the controller and the Codesys_application_OK input is FALSE, then the alarm activates on the controller.

If the input is not connected, then the default value for this input is FALSE.

More information
See CODESYS in the Designer's handbook for more information about configuring the CODESYS application not
OK alarm.

Timeout_cycles
To ensure that the CODESYS program’s scan period is synchronised with the CODESYS scan, the Timeout_cycles for the
program must be configured. This input shows the maximum number of cycles that are allowed to pass without writing or
reading data from the controller.

To see the scan time of the CODESYS program, open the MainTask in the workspace by double-clicking on MainTask in the
project tree. The scan time value is shown under Type > Interval (e.g. t#200ms). The scan time for an ML 300 controller is
40 ms.

Use the following formula to calculate the timeout cycle:

timeout cycles = ML 300 application scan time / CODESYS scan interval = 40 ms / CODESYS scan interval

Always round the calculated timeout cycle up to determine the correct value for the Timeout_cycles input. For example, for
a calculated timeout cycle of 1.2, use 2.

Required Timeout_cycles calculation example

The CODESYS cyclic interval is set to 50 ms, as shown in the image below.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 27 of 90

The Timeout_cycles input is: 40 ms / 50 ms = 0.8 = 1

Link_OK
The Link_OK output shows if there are errors present in the controller. The value of this output is determined by the value of
the Error_code output. If the Error_code output is greater than 0, then Link_OK is FALSE and there is an error present in the
CODESYS program on the controller.

This output is shown as a boolean value.

Error_code
The table below lists the error codes that can occur and their descriptions. The error code shown is the sum of all the errors
present in the application. For example, if you have the same function configured on the controller and in CODESYS (error
code 2) and you have more than one ML 300 function block present in your application (error code 64), then the error code
shown is 66.

Error code Description

1 The shared memory size has been exceeded.

2 The same function is configured in CODESYS and on the controller.

4 The controller did not read or write data on the shared memory yet.

8 The controller did not read or write data on the shared memory inside the Timeout_cycles limit.

16 The same LDO UID is used more than once.

32 The versions of the controller process, CODESYS process and library do not match.

64

The application consists of the wrong number of main function blocks.

You are not allowed to have an ML300_read_write function block and the ML300_read function block and/or
ML300_write function block in your application at the same time.

128 An unidentified error. Please contact DEIF service and support for assistance.

The error code is shown as an integer.

Config_conflict_error_count
The Config_conflict_error_count output shows how many I/O functions are configured in both the controller and in
CODESYS. You can see which I/O functions are causing the conflict by referring to the values shown under the
Config_conflict_errors output.

This output is shown as a integer value.

Config_conflict_errors
If the same controller function is configured in CODESYS and on the controller, then this output shows the Text ID of the IO
that is causing the conflict.

This output is an array of 20 values that are shown as double integers. Follow these steps to relate the output double
integer value to text:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 28 of 90

1. Open the Library Manager tab for the Application.
2. Select the controller specific library from the list of available libraries for the application.

• For example, Multi-line 300 GPC - Genset [GB] for a GPC 300 GENSET controller.
3. Double-click on "Languages" in the bottom part of the library workspace to open the Languages tab for the controller

specific library.

•
4. Look up the value in the table to find the text description for the controller function.

•

3.4 Communication with the controller

3.4.1 Introduction

To download your program to the controller, you have to establish a connection between CODESYS and the ML 300
controller. You can establish the connection through the Device tab in the working area.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 29 of 90

Figure 3.3 Example of an established connection between CODESYS and the ML 300 controller

To open the Device tab in the working area, double-click on the device (for example, Device (Multi-line300 PCM 3.1)) in the
project tree.

To connect to the controller:
1. Create a local gateway.

• This is only required if this is the first time you run CODESYS.
2. Use the gateway to search for ML 300 controllers that have CODESYS installed.

3.4.2 Create a local gateway

You only need to create a local gateway the first time you create a CODESYS project. This gateway will be used by default
when you create new projects and it is the only defined gateway.

Follow these steps to create a local gateway:

1. Open the Device tab in the working area.
• Double-click on the device (for example, Device (Multi-line300 PCM 3.1)) in the project tree to open the Device tab.

2. Under Communication settings select Gateway > Add new gateway...:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 30 of 90

•
3. Complete the information in the Gateway window:

•
• Enter a name for the gateway.
• Set Driver to TCP/IP.
• Keep IP-Address set to localhost.
• Keep Port set to the default value.
• Select OK.

4. A green dot next to the gateway icon shows that the selected gateway is running without any errors:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 31 of 90

•
• A red dot next to the gateway icon shows that there is a gateway error.

3.4.3 Connect to the controller

To detect and connect to a controller on the network:
• Your computer must be directly connected to the controller network.
• A local gateway must be defined and selected in CODESYS.
• The local gateway must be running without any errors.
• The controller must have an IPv4 address configured.

More information
See Tools, Communication in the Operators manual for more information about setting up an IPv4 address for the
controller.

Follow these steps to connect to the controller:
1. Open the Device tab in the working area.

• Double-click on the device (for example, Device (Multi-line300 PCM 3.1)) in the project tree to open the Device tab.
2. Under Communication settings select Scan Network...:

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 32 of 90

3. CODESYS automatically starts scanning the network through the selected gateway. A list of controllers with CODESYS
installed is displayed.
• Select Scan network to start scanning the network if the scan does not start automatically.

•
4. Select the controller from the list that you wish to communicate with and select OK.
5. A green dot next to the controller icon shows that the communication with the selected controller is running without any

errors:

•
• A grey dot next to the controller icon shows that there is no communication between the selected controller and

CODESYS.
• A red dot next to the controller icon shows that there is an error communicating with the selected controller.

If you are not able to communicate with the Multi-line 300 controller, ensure that the controller is configured with an IPv4
address, and that your PC is within the same IP range as the controller.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 33 of 90

3.5 Download the application to the controller

3.5.1 Pre-compile the application

To pre-compile your application, select Build from the toolbar, or press F11. Pre-compiling can be used to check for
syntax errors in your application without generating any code.

After the CODESYS finished pre-compiling, the result will be displayed in the Messages window. The Messages window is
placed at the lower part of the user interface by default.

NOTE You can log into the controller without pre-compiling your application.

3.5.2 Generate and download the application

The application is automatically generated when you log on to the controller. To generate your code before logging onto the
controller, open the Build menu and select Generate code.

Before logging on to the controller, check that the communication with the selected controller is running without any errors.
That is, there is a green dot next to the controller icon in the Communication settings screen in the Device working area.

Your application is automatically downloaded to the controller when you log on to the controller. Follow these steps to log
on to the controller:

1. Select Online > Login:

•
2. If the communication settings have been configured correctly, the following message boxes can appear:

• First connection:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 34 of 90

◦
◦ Select Yes to download the program to the controller.

• If the application has been updated since the last download:

◦
◦ Select Login with download and select OK to download the latest version of the application to the controller.
◦ Ensure Update bootproject is selected if you want your project to be available on the controller after you power

cycle the controller.
• If the application is running on the controller, and CODESYS cannot determine if it is the same application:

◦
◦ Only if you are sure it is safe to replace the application on the controller, select Yes to download the new

application to the controller.
3. Once the application is successfully downloaded to the controller, CODESYS displays the result in the Messages

window.
• If the project has been created correctly, you will not receive any compilation errors and you can run the application.
• If CODESYS detected any compilation errors during the download, they are also displayed in the Messages window.

NOTE The CODESYS manual also refers to being logged on to the controller as online mode, and the POUs displayed in
the working area while logged on as online views.

3.5.3 Start and stop the application

When you are logged on to the controller you can start or stop the CODESYS application:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 35 of 90

Action Toolbar shortcut Keyboard shortcut Status bar

Start your application Start F5 RUN is visible when the program is
running.

Stop your application Stop Shift + F8 STOP is visible when the program is
running.

Figure 3.4 Example of a running application

3.6 Monitor the application

3.6.1 Introduction

When the program is running on the controller and you are logged on to the controller through CODESYS, you can monitor
the values of the variables. It is also possible to change the value of some variables while you are monitoring the variable
values.

You can monitor the variable values of a specific POU by opening the POU in the working area.

If you want to monitor the variable values of more than one POU at the same time or a specific set of variables, you can
create a Watch window.

It is possible to change the variable values in the working area or the watch window by writing or forcing a new variable
value to the controller.

3.6.2 Monitor in the working area

When you are logged on to the controller through CODESYS you can open a POU to monitor the variables in the working
area. To open the POU in the working area, simply double-click on the POU in the project tree. Alternatively you can select
the POU in the project tree and select Edit object from the right-click menu.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 36 of 90

Figure 3.5 The POU, PLC_PRG, can be opened in the working area by double-clicking on it

In the declaration part of the open POU in the working area, the variable watch list is shown:

All the variables relating to the open POU is shown in this list. You can change the values of some variables using this table.

More information
See Writing and forcing variables for more information about how to change the variables values.

In the implementation part of the open POU in the working area, the program function diagram, ladder logic, or code is
shown:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 37 of 90

Figure 3.6 An ML 300 function block with inline monitoring activated

If Inline monitoring is activated, the inline monitoring boxes are placed behind each variable in the code, or next to the
variable in the function block. The inline monitoring boxes shows the actual value of the variable in real time.

To activate or deactivate Inline monitoring go to Tools > Options to open the Options window. Activate or deactivate the
function under Text editor > Monitoring > Enable inline monitoring.

Figure 3.7 Activate or deactivate Inline monitoring in the Options window

3.6.3 Monitor in watch windows

Watch windows are useful to monitor specific variables in a POU, or to monitor variables from different POUs in a single
window.

You can also change the values of some variables in the watch window. This is useful, for example, to debug code.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 38 of 90

More information
See Writing and forcing variables for more information about how to change the variables values.

Follow these steps to create a watch window:

1. Select Watch 1 from View > Watch to open a watch window.

•
2. Double-click in an empty cell in the Expression column.

•

3. Select the Input assistant to open the Input assistant window.
4. Under Categories > Watch Variables, select a variable or group of variables (for example ML300_0) in a POU to watch:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 39 of 90

•
• Select OK to confirm your selection and continue.

5. Press the Return key to add your selected variable(s) to the watch window.
• Details for the variable(s) (for example, the application and type) are automatically added to the watch window.

6. You can monitor the selected variable(s) in the watch window:

•
• It is also possible to change the values of some variables using this watch window.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 40 of 90

3.6.4 Write and force variables

Some variables in your program can be changed while the program is running. To change the value of the variables in your
program, first prepare a new value for the variable. Then Write or Force the prepared value to the program.

Preparing variables
To change the value of a variable, you must first prepare a replacement value. The new value for the variable is stored in the
Prepared value column. The new variable remains in the Prepared value column until the user chooses to Write or Force the
prepared value to the variable. You can prepare multiple variables and Write or Force all of the prepared values at the same
time.

To prepare a variable of the type INT, DINT, UINT, or STRING:

1. Double-click on the field in the Prepared value column.
2. Enter the new value.
3. Press the Return key or click outside the field.

The Prepared value is ready to be written or forced to the program.

To prepare a variable of the type BOOL:

1. Click on the field in the Prepared value column until the desired value appears.

The Prepared value is ready to be written or forced to the program.

Figure 3.8 Example of a UINT and BOOL prepared value

Writing variables
When you Write a prepared value to the program, the variable updates during the next run cycle. The new value can be
updated immediately by the program during the next run cycle.

Follow these steps to Write a new variable value to the controller:

1. Prepare the variable value(s).
2. Select Debug > Write values.

• Alternatively press Ctrl + F7.
3. The Value column updates and shows the prepared value.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 41 of 90

•

Some variables cannot be updated. Typically such variables receive their input from a different source. If you attempt to
Write a new value to such a variable, then the variable value remains unchanged.

Forcing variables
When you Force a prepared value to the program, the variable updates during the next run cycle. The forced value remains
unchanged in the value column, until it is unforced.

Forced variables remain in the system until unforced by the user. The user always receives a warning, when there are
forced variables remaining in the application when logging out.

Follow these steps to Force a new variable value to the controller:
1. Prepare the variable value(s).
2. Select Debug > Force values.

a. Alternatively press F7.
3. The Value column updates and shows the forced values.

• The icon to the left of the value indicates that the variable is a forced variable.

•

Some variables cannot be updated. Typically such variables receive their input from a different source. If you attempt to
Force a new value to such a variable, then the value in the Value column changes to appear as if it is forced, but any
outputs connected to it will show the original value.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 42 of 90

4. Function blocks

4.1 Version function block

4.1.1 Introduction

Version function blocks allow you to read the version numbers of the software on the controller and the software on the
hardware modules that are installed on the controller. The version function blocks are only able to read this information from
the controller that is running CODESYS.

There are three version function blocks:

• Versions
• Card_info
• Software_info

The Versions function block gives a basic overview of the controller and the controller software, and sends the additional
software version information to the Card_info and Software_info function blocks.

The Versions function block must be included in your program when you use the Card_info and Software_info function
blocks.

The Card_info function block gives information about the location and the software version that is installed on the selected
hardware module.

The Software_info function block gives information about the software version of the different software that is installed on
the controller that is running CODESYS.

4.1.2 Add a version function block

You must always add a Versions function block when you add a Card_info and/or Software_info function block.

Follow these steps to add a version function block (for example, Card_info function block) to your program:

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 43 of 90

•
3. Go to Categories > Functionblocks > MULTILINE_300 > Version and select the version function block you want to add:

• For example, Versions or Card_info.

•
• Select OK.

4. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare
the variables as they are shown:

•
5. After connecting the inputs and/or outputs of the version function block in your program it is ready to be downloaded to

the controller:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 44 of 90

•

More information
See ML 300 CODESYS projects, Download the application to the controller for more information about how to
download and run your program on an ML 300 controller.

4.1.3 Card_info function block overview

Card_info function blocks can be added to a program to read additional information about specific modules that are
installed on the controller. Card_info function blocks can be used to:
• Read the location of the module.
• Read the version number of the module software.
• Read the name of the module.

Figure 4.1 Card_info function block example

Table 4.1 Card_info function block input and output overview

Name Input /
Output Type Notes

Card Input UINT
Select the module number of the module that you want to read version
information from.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 45 of 90

Name Input /
Output Type Notes

The input must be greater than zero, and must not be more than the
number of cards in the rack.

The number of modules installed in the rack can be read from the
Number_of_cards output on the Versions function block.

Card_list Input Card_version_list

This input reads the card version information from the controller.

This input must be connected to the Card_list output on the Versions
function block in order for the Card_info function block outputs to output
data.

Rack Output INT This output displays the rack number where the module is installed.

Slot Output INT This output displays the slot number where the module is installed in the
rack.

Version Output STRING This output displays the version number of the software installed on the
module.

Revision Output STRING This output displays the revision number of the version of the software
installed on the module.

Name_text_id Output DINT

This output displays the text id that the controller uses to display the
module name.

You can also see the name of the module in the Pretty name output.

Contact DEIF Service and Support if you require a document that you can
use to look up the module name associated to the ID.

Pretty name Output STRING This output displays the name of the module.

4.1.4 Software_info function block overview

Software_info function blocks can be used to read the version numbers of the controller software.

Figure 4.2 Software_info function block example

Table 4.2 Software_info function block input and output overview

Name Input /
Output Type Notes

Software Input UINT

Select the software of the controller that you want to read version
information from.

The input must be greater than zero, and must not be more than the
number of software in the controller.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 46 of 90

Name Input /
Output Type Notes

The number of software can be read from the Number_of_softwares
output on the Versions function block.

Software_list Input Software_version_list

This input reads the version information of the selected software from
the controller.

This input must be connected to the Software_list output on the
Versions function block in order for the Software_info function block
outputs to output data.

Version Output STRING This output displays the version number of the selected software that is
installed on the controller.

Revision Output STRING This output displays the revision number of the version of the selected
software that is installed on the controller.

Name_text_ID Output DINT

This output displays the text id that the controller uses to display the
selected software name.

You can also see the name of the selected software in the Pretty name
output.

Contact DEIF Service and Support if you require a document that you
can use to look up the module name associated to the ID.

Pretty_name Output STRING This output displays the name of the selected software.

4.1.5 Versions function block overview

The Versions function block collects the version information of the controller hardware modules and controller software,
and prepares it to be displayed by the Card_info function block and the Software_info function block. The Versions
function block also collects and displays the following controller information:

• Product name.
• Application software version.
• Application software revision.
• REST interface version.
• Number of modules installed on the controller.
• Number of software installed on the controller.

Figure 4.3 Versions function block example

Multi-line 300 CODESYS guidelines 4189341175C EN Page 47 of 90

Table 4.3 Versions function block input and output overview

Name Input /
Output Type Notes

Update Input BOOL
When this input is set to TRUE, the output information is
updated. The update only happens once for each time the
input is toggled from FALSE to TRUE.

Busy Output BOOL

When this output is TRUE, the version information is being
updated.

When this output is FALSE, the version information is not
being updated.

Done Output BOOL

When this output is TRUE, the version information update
complete.

When this output is FALSE, the version information the
version information is being updated, or the version
information has not been updated since the program was
started on the controller.

Product_name Output STRING This output displays the controller product type, for example
GPC 300 or PPU 300.

Version Output STRING This output displays the software version of the application
software that is installed on the controller.

Revision Output STRING This output displays the revision of the of the application
software version that is installed on the controller.

REST_version Output STRING This output displays the version of the REST interface on the
controller.

Number_of_cards Output INT
This output displays how many modules are installed on the
controller. A module can for example be a power supply
module 3.1 (PSM 3.1).

Number_of_softwares Output INT
This output displays how many software types are installed
on the controller. A software type can for example be the
controller application software.

Card_list Output Card_version_software

This output is used to send the version information of the
installed hardware modules to the Card_info function block.

This output must be connected to the Card_list input on the
Card_info function block in order for the Card_info function
block outputs to output data.

Software_list Output Software_version_list

This output is used to send the version information of the
installed software on the controller to the Software_info
function block.

This output must be connected to the Software_list input on
the Software_info function block in order for the
Software_info function block outputs to output data.

4.2 I/O function block

4.2.1 Introduction

I/O function blocks provide a useful interface in your program to the hardware terminals on the ML 300 controller.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 48 of 90

The digital and analogue input values allow you to read the terminal value as measured by the controller, and use the value
in your program.

Similarly your program can write the output values to digital and analogue output terminals on the controller, which can for
example, be used to control equipment on the switchboard. An example can be a digital output on the controller that is
connected to a warning light on the switchboard.

To use these I/O function blocks, you must:

1. Add the I/O function block to the CODESYS program.
2. Assign the required inputs to the function block.
3. Download the program on the controller.
4. Run the program.
5. Assign the CODESYS I/O to a free terminal on the controller.

4.2.2 Add an I/O function block

Follow these steps to add an I/O function block to your application:

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > MULTILINE_300_IO and select the input or output you want to add:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 49 of 90

•
• Select OK.

4. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare
the variables as they are shown:

•
5. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the IO_index input:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 50 of 90

•

6. Select ??? in the Input and then select to open the Input Assistant window for the Input:

•
7. Go to Categories > Variables > MULTILINE_300_IO > Enums > E_IO_INDEX and select the index number of the input (0

to 39):

•
• The IO_index value must be unique for the I/O type in your application.
• Select OK.

8. Optional: Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Name
input, and one to the Update_name_index input:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 51 of 90

•
• To assign a fixed name to the I/O, type the name must be surrounded by double quotation marks.

◦ For example, to rename the I/O with IO_INDEX 0 to Procedure 1, select ??? in the Input, type "Procedure 1" and
press Return on your keyboard. The new name is only visible on the controller after it is written to the controller
using the Update_name_index input.

• To assign a variable to the I/O Name input:
a. Select the input that is connected to the Name input.
b. Type the variable name (for example, new_name) and press Return on your keyboard.
c. Select OK to declare the variable as it is shown.

NOTE To rename an I/O that has a variable assigned to the Name input you must set the variable value to the
name that you want to display, then write the new name to the controller using the Update_name_index
input.

• If you connect an input to the Name input, you must also add a variable to the Update_name_index input. This is used
to write the selected name to the controller.

9. The I/O function block has been added to the project and can be assigned in the ML 300 controller after the application
is downloaded to the controller.

4.2.3 Assign a CODESYS I/O function in the controller

To see the custom CODESYS I/Os in the controller:
1. The POU containing the I/O function block must be added to MainTask in the project tree.
2. The program must be downloaded to the controller.
3. The program must have run at least once.

More information
See ML 300 CODESYS projects, Download the application to the controller for more information about how to
download and run your program on an ML 300 controller.

Follow these steps to assign the CODESYS I/O function block to a controller terminal:
1. Use PICUS to log on to the ML 300 controller to which the I/O is assigned, and go to Configure > Input/output:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 52 of 90

•
2. Select a hardware module where you want to configure the I/O and select an unused terminal:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 53 of 90

•
• For example, if you want to configure a digital input, then select an IOM3.1 module.

3. Go to Functions > Local > CODESYS and select the I/O that you configured in the CODESYS program.

•
• The CODESYS I/O is in the position you set under IO_index + 1. For example, if the IO_index is set to 0, then the I/O is

located in position 1 of the CODESYS list for that I/O.
• If you cannot see the configured CODESYS parameters in the I/O page in PICUS:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 54 of 90

◦ Refresh the page in PICUS.
◦ Check that the CODESYS Update_name_index for the I/O has been toggled from FALSE to TRUE.

4. Select Save, and then select Write from the right side panel.
5. The CODESYS I/O is configured to a terminal on the ML 300 controller. The controller can now send the measured value

of an input terminal to the CODESYS program, or send the value from the CODESYS program to the output terminal of
the controller.

4.3 Standard ML 300 functions

4.3.1 Introduction

You can assign ML 300 input and output functions to function blocks in CODESYS. This allows you to program additional
logic to customise your controller application. By assigning some functions to the CODESYS program, you are also able to
reduce the number of physical terminals that need to be connected on the controller.

The ML 300 function blocks are divided into four groups:

• Alarms
• Functions
• Live data
• Parameters (It is only possible to read parameter values on marine controllers, for example PPU 300.)

Alarm function blocks contain an overview of the alarm status, some alarm parameter settings, and the ability to
acknowledge and unlatch alarms.

Functions function blocks contain a variety of functions. These functions include commands that can be sent to the
controller, status of the controller, controller alarms and functions, and inter-controller communication.

Live data function blocks contain on overview of the immediate actual values that the controller receives from
measurements.

Parameter function blocks contain parameter overviews for alarm and controller functions. The parameter function blocks
are divided into a read-only function block to read the state of the parameter, and a write function block to change
individual settings for a specific parameter.

The function paths for the standard ML 300 functions are the same as used in other ML 300 controller interfaces, for
example PICUS. The function name includes the path used to navigate to the function.

4.3.2 Add standard ML 300 functions function blocks

Follow these steps to add a standard ML 300 function function block to your program:

1. Drag a Box from the ToolBox to the implementation part of the working area:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 55 of 90

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > [Controller library] and select the function you want to add:

• For example, Functions > Alarm_system > Command > Alarm_system_Command_Acknowledge_all_alarms.

•
• Select OK.

4. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare
the variables as they are shown:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 56 of 90

•
5. After connecting the inputs and/or outputs of the standard function in your program it is ready to be downloaded to the

controller:

•

More information
See ML 300 CODESYS projects, Download the application to the controller for more information about how to
download and run your program on an ML 300 controller.

4.3.3 Function conflicts

When an ML 300 function that is already assigned to the controller is configured in the CODESYS program that is running
on the controller, a conflict occurs. This conflict sets the Link_OK output on the ML 300 function block in the program to
FALSE, which prevents the application from running on the controller.

If there is a configuration conflict, or if CODESYS tries to write a value to the controller that is out of range, then the
controller also activates a warning alarm.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 57 of 90

Figure 4.4 Example of the CODESYS configuration conflict alarm in PICUS

To resolve the conflict you can:

• Remove the conflicting ML 300 function from the CODESYS program, and update the application on the controller.
• Remove the conflicting I/O function from the controller, and perform a warm reset of the CODESYS application.

More information
See ML 300 CODESYS projects, Add the ML 300 function block, ML 300 function blocks' inputs and outputs for
more information about how to use CODESYS to see which function is causing the conflict.

Warm reset
To perform a warm reset, select Online > Reset warm.

After performing a warm reset of the CODESYS program, you must start the CODESYS application again for the application
to run on the controller.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 58 of 90

4.3.4 Alarm function block overview

Alarm function blocks are added to the working area in the same way as other standard ML 300 functions function blocks.
The parameters of an alarm cannot be changed with an alarm function block. The parameters of an alarm can only be
updated using a parameter function block for the corresponding alarm. Alarm function blocks can be used to:
• Acknowledge alarms
• Unlatch acknowledged latched alarms
• Read the status of the alarm
• Read some alarm parameters

Figure 4.5 Alarm function block example

Table 4.4 Alarm function block input and output overview

Name Input /
Output Type Notes

Acknowledge Input BOOL
When this input receives a true signal, the unacknowledged alarm is
acknowledged. If the alarm is not present in the controller, or if the
alarm has already been acknowledged, then nothing happens.

Reset_latch Input BOOL
When this input receives a true signal, the acknowledged and latched
alarm is unlatched. If the alarm is not present in the controller, or if the
alarm has not yet been acknowledged, then nothing happens.

State Output E_ALARM_STATE This output displays the current state of the alarm.

Timer_is_running Output BOOL When this output is true, the alarm timer is running and the alarm has
not been triggered on the controller.

Timer_remaining Output TIME This output displays the time remaining before the alarm is activated
on the controller.

Value_actual Output REAL
This output displays the measured value of the alarm. When the
measured value is above the set point the alarm delay timer is
activated. When the timer expires the alarm activates.

Inhibited Output BOOL When this output is true, the alarm is inhibited and does not activate
when the activation parameters are fulfilled.

Set_point Output REAL This output displays the set point at which the alarm activates. If the
alarm does not have a set point, the value is zero by default.

Reset_hysteresis Output REAL This output displays the reset hysteresis value of the alarm.

Enabled Output BOOL
When this output is true, the alarm is enabled in the alarm
parameters. When this output is false, the alarm is not enabled in the
alarm parameters.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 59 of 90

Name Input /
Output Type Notes

Alarm_action Output E_ALARM_ACTION This output displays the alarm action that the controller performs
when the alarm activates.

Alarm_counter Output UDINT

This output counts the number of times the alarm appeared in the
alarm list of the controller.

The alarm counter only increases if the alarm was not present in the
alarm list when the alarm activates.

4.3.5 Parameter function block overview

NOTE To comply with the regulations from Marine Class societies, it is not possible to write parameters to the controller if
the controller is designed for marine applications (for example, PPU 300).

Parameter function blocks are added to the working area in the same way as other standard ML 300 functions function
blocks. Parameter function blocks are divided into two groups:

• Read configuration function blocks.
• Configure function blocks (not available on marine products).

Read configuration function blocks
Each controller function with configurable parameters (including alarms), has a function block to read the function's
parameter configuration. The read configuration function block is located under Categories > Functionblocks > [Controller
library] > Parameters > [Function path].

[Controller library] is the ML 300 library for the controller that you are running CODESYS on, for example
MULTILINE_300_PPU_DG. [Function path] is the location of the function's or alarm's parameters as described in the
designer's handbook for the product.

Figure 4.6 Alarm and controller function read configuration function block examples

Configure function blocks
To comply with the regulations from Marine Class societies, parameter configure function blocks are not available if the
controller is designed for marine applications (for example, PPU 300).

Each controller function with configurable parameters (including alarms), has a function block for each parameter to
configure each configurable function of the parameter. For example, Lamp test has three configurable parameters:
• Activate
• Duration
• Colour cycle time

Each of these configurable parameters has a function block associated to it to change the parameter value. The configure
function block always contains two inputs: Write and the configurable parameter.

The Write input is used to write the parameter value of the configurable parameter to the controller. This input is a pulse,
and only writes the new value to the controller when the input changes to TRUE. If Write remains TRUE and the parameter
value updates, the updated value is not written to the controller. To write the new value to the controller, Write must first be

Multi-line 300 CODESYS guidelines 4189341175C EN Page 60 of 90

changed to FALSE, and then back to TRUE to write the value to the controller. If a value is written to the controller that is
not acceptable, for example an out of range value or a non-configurable parameter, the controller activates the CODESYS
configuration conflict alarm.

The configurable parameter depends on the selected parameter function block for the controller function. This input stores
the new parameter value until Write changes from FALSE to TRUE.

The configure function blocks are located under Categories > Functionblocks > [Controller library] > Parameters >
[Function path] > Configure.

[Controller library] is the ML 300 library for the controller that you are running CODESYS on. [Function path] is the
location of the function's or alarm's parameters as described in the designer's handbook for the product.

Figure 4.7 Configure function blocks for Lamp test

Array inputs and outputs
Alarm parameter function blocks can contain array inputs or outputs. Array inputs and outputs are used for the Inhibit and
Configuration parameters.

To read the individual bit values of the array in a read configuration function block, a Selector element is required. Follow
these steps to add and configure the Selector element:

1. Drag the Selector element from the Toolbox to the working area.
2. Connect the input of the Selector element to the Inhibit or Configuration output of the read configuration function block.

•

3. Select ??? in the Selector and then select to open the Input Assistant window for the Selector.
4. Go to Categories > Structured types > [Controller library] > Parameters > _Types and select the same parameter as

the output that you connected the Selector element to.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 61 of 90

•
• Select OK and then press Return.

5. You are now ready to connect outputs to the Selector element.
• The output variables of the Selector element must be declared as Boolean.

•

To write values to the individual bits of the array in a parameter configure function block, a Composer element is required.
Follow these steps to add and configure the Composer element:

1. Drag the Composer element from the Toolbox to the working area.
2. Connect the output of the Composer element to the Inhibit or Configuration input of the parameter configure function

block.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 62 of 90

•

3. Select ??? in the Composer and then select to open the Input Assistant window for the Composer.
4. Go to Categories > Structured types > [Controller library] > Parameters > _Types and select the same parameter as

the input that you connected the Composer element to.

•
• Select OK and then press Return.

5. You are now ready to connect inputs to the Composer element.
• The input variables of the Composer element must be declared as Boolean.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 63 of 90

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 64 of 90

5. Extended ML 300 controller functionality

5.1 Create a multiple ring network

5.1.1 Introduction

The controllers communicate with each other to manage the system over the DEIF network (Ethernet network).

For communication redundancy, controllers can be connected in multiple rings if CODESYS is installed on the controllers. If
there is a network disruption or failure, the DEIF proprietary ring protocol changes the communication path within 100
milliseconds.

If you want to run a system with a multiple ring network, then you must configure each controller in the top ring as a Top
unit.

Figure 5.1 Example of a multiple ring network

2 3

1 4

5

Controller

Controller

Controller

Controller

Controller Controller

1 2

1 2 1 2

1 2

1 21 2

P
C

M

P
C

M

P
C

M

P
C

M

P
C

M

P
C

M

P
S

M

P
S

M

P
S

M

P
S

M

P
S

M

P
S

M

4 5 2 3

1 4

5

Controller

Controller

Controller

Controller

Controller Controller

1 2

1 2 1 2

1 2

1 21 2

P
C

M

P
C

M

P
C

M

P
C

M

P
C

M

P
C

M

P
S

M

P
S

M

P
S

M

P
S

M

P
S

M

P
S

M

4 5 2 3

1 4

5

Controller

Controller

Controller

Controller

Controller Controller

1 2

1 2 1 2

1 2

1 21 2

P
C

M

P
C

M

P
C

M

P
C

M

P
C

M

P
C

M

P
S

M

P
S

M

P
S

M

P
S

M

P
S

M

P
S

M

4 5

Bottom
ring

Top ring

5.1.2 Requirements

To use multiple rings, the following conditions must be met:

• No display units in the network.
• Each controller that forms the top ring must have CODESYS installed.
• Each controller that forms the top ring must be configured as a Top unit.

5.1.3 Configure a Top Unit controller

Follow these steps to configure a controller as a Top unit:

1. Drag a Box from the ToolBox to the implementation part of the working area:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 65 of 90

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > [Controller library] > Main and select the Network_unit function block:

•
• [Controller library] is the library for the controller you are programming for. For example, MULTILINE_300_PPU_DG.
• Select OK.

4. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare
the variables as they are shown:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 66 of 90

•
5. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Network_unit input:

•

6. Select ??? in the Input and then select to open the Input Assistant window.
7. Go to Categories > Variables > MULTILINE_300 > Enums > E_NETWORK_UNIT_TYPE and select e_TOP_UNIT:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 67 of 90

•
• Select OK.

8. Download the program to the controller and run the program.
9. Power cycle the controller.
10. The controller is configured as a top ring controller and will function after the program has successfully run on the

controller and the controller has been power cycled.

•

5.2 Inter-controller communication

5.2.1 Introduction

Controllers using CODESYS and CustomLogic can use inter-controller communication (ICC) to send to other controllers and
receive logic signals from other controllers. The logic signals can be used in the controller's CODESYS application or
CustomLogic configuration. Communication is possible between:
• ML 300 controllers with CODESYS
• ML 300 controllers without CODESYS (using CustomLogic)
• ML 300 controllers without CODESYS and ML 300 controllers with CODESYS.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 68 of 90

Inter-controller communication signals can only be sent between controllers in the same bottom ring of a multiple ring
network.

This section will show you how to add the ICC function blocks in CODESYS.

More information
See CustomLogic, ICC (Inter-controller communication) in the PICUS manual for more information about how to
configure ICC in PICUS CustomLogic.

5.2.2 Add an ICC output function block

Follow these steps to add the ICC_Output function block to a Program POU using the continuous function chart
programming language:

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > [Controller library] > Functions > ICC and select the ICC_Output function block:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 69 of 90

•

• Where [Controller library] is the library for your specific controller type, for example
MULTILINE_300_GPC_GENSET_GB for a GPC 300 genset controller.

• Select OK.
4. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare

the variables as they are shown:

•
5. The ICC_Output function block has been added to the project:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 70 of 90

•
• You can now assign Boolean outputs to the ICC_Output function block inputs. The state of the outputs can be read

by other controllers in the network.

5.2.3 Add an ICC input function block

Follow these steps to add the ICC_Input function block to a Program POU using the continuous function chart programming
language:

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > [Controller library] > Functions > ICC and select the ICC_Input function block:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 71 of 90

•

• Where [Controller library] is the library for your specific controller type, for example
MULTILINE_300_GPC_GENSET_GB for a GPC 300 genset controller.

• Select OK.
4. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare

the variables as they are shown:

•
5. The ICC_Input function block has been added to the project:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 72 of 90

•
6. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Controller_ID input:

•

7. Select ??? in the Input and then select to open the Input Assistant window for the Input:

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 73 of 90

8. Go to Categories > Variables > [Controller library] > Enums > E_CONTROLLER_ID and select the controller ID number
of the controller where the information is read from (1 to 64):

•
• The E_CONTROLLER_ID of the controller that you read information from must match the Controller ID that was

assigned to the controller on the single line diagram.
• Select OK.

9. The ICC_Input function block is ready to be used in the application:

•
• You can now assign the Boolean outputs of the ICC_Input function block to other function blocks as inputs.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 74 of 90

6. Additional libraries

6.1 Introduction

For further customisation and performance additional libraries can be installed. These are.

• Multiline_300_custom_parameters.compiled-library
• Multiline_300_priority_data.compiled-library.

The ML 300 controller libraries must be installed in CODESYS before you can add them to your application.

More information
See Get started with CODESYS, Install, Add the Multi-line 300 libraries to your application for more information
about how to install the ML 300 controller libraries.

6.2 Custom parameters

6.2.1 Setup BOOL function block

Follow these steps to add a Parameter setup Function block to your application:

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > MULTILINE_300_CUSTOM_PARAMETERS and select the value bool setup block:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 75 of 90

•
4. Select OK.
5. Press Return on your keyboard two times to open the Auto Declare window for the function block.
6. Select OK to declare the variables as they are shown:

•
7. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Value_index input:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 76 of 90

•
8. Go to Categories > Variables > MULTILINE_300_CUSTOM_PARAMETERS > Enums > E_VALUE_INDEX and select the

index number of the input (0 to ?):

•
• The Value_index value must be unique for the Parameter type/set in your application.

9. Select OK.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 77 of 90

10. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Name input, and
one to the Update input:

•
• To assign a fixed name to the I/O, type the name must be surrounded by double quotation marks.

◦ For example, to rename the Parameter with IO_INDEX 0 to Procedure 1, select ??? in the Input, type "Procedure 1"
and press Return on your keyboard.

• The new name is only visible on the controller after it is written to the controller using the Update input.
• To assign a variable to the Parameter Name input:

a. Select the input that is connected to the Name input.
b. Type the variable name (for example, new_name) and press Return on your keyboard.
c. Select OK to declare the variable as it is shown.

• To rename a Parameter that has a variable assigned to the Name input you must set the variable value to the name
that you want to display, then write the new name to the controller using the Update input.

• If you connect an input to the Name input, you must also add a variable to the Update input. This is used to write the
selected name to the controller.

11. The Parameter function block has been added to the project and can be assigned in the ML 300 controller after the
application is downloaded to the controller.

6.2.2 Setup float/integer function block

Follow these steps to add an Parameter setup Function block to your application:

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 78 of 90

•
3. Go to Categories > Functionblocks > MULTILINE_300_CUSTOM_PARAMETERS and select the value float/integer setup

block:

•
4. Select OK.
5. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare

the variables as they are shown:

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 79 of 90

•
6. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Value_index input:

•
7. Go to Categories > Variables > MULTILINE_300_CUSTOM_PARAMETERS > Enums > E_VALUE_INDEX and select the

index number of the input (0 to ?):

Multi-line 300 CODESYS guidelines 4189341175C EN Page 80 of 90

•
• The Value_index value must be unique for the Parameter type/set in your application.

8. Select OK.
9. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Name, Unit,

Min_value, Max_Value, Default_Value, precision (Float only) and Update input:

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 81 of 90

• To assign a fixed name to the parameter, type the name must be surrounded by double quotation marks.
◦ For example, to rename the Parameter with IO_INDEX 0 to Procedure 1, select ??? in the Input, type "Procedure 1"

and press Return on your keyboard.
• To assign a unit, represented in PICUS, Go to Categories > Variables > MULTILINE_300_CUSTOM_PARAMETERS >

Enums > E_VALUE_Unit and select the unit you need.

◦
◦ a. Define a minimum value, this restricts PICUS from writing values lower than the min_Value.

b. Define a maximum value, this restricts PICUS from writing values higher than the max_Value.
c. Define a default value, this value will be the default.
d. Define Precision, this defines the amount of decimals shown in PICUS. (Precision parameter is only available

for Custom Parameter of type Float, not for Integer.)
• The new name is only visible on the controller after it is written to the controller using the Update input.
• To assign a variable to the Parameter Name input:

a. Select the input that is connected to the Name input.
b. Type the variable name (for example, new_name) and press Return on your keyboard.
c. Select OK to declare the variable as it is shown.

• To rename an Parameter that has a variable assigned to the Name input you must set the variable value to the name
that you want to display, then write the new name to the controller using the Update input.

• If you connect an input to the Name input, you must also add a variable to the Update input. This is used to write the
selected name to the controller.

10. The Parameter function block has been added to the project and can be assigned in the ML 300 controller after the
application is downloaded to the controller.

6.2.3 Setup read function block

The Read Function Block has the same parameters for all three block types, value-index, value and update.

Follow these steps to add an Parameter Read Function block to your application:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 82 of 90

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > MULTILINE_300_CUSTOM_PARAMETERS and select the value read block you

need:

•
4. Select OK.
5. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare

the variables as they are shown:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 83 of 90

•
6. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Value_index input:

•
7. Go to Categories > Variables > MULTILINE_300_CUSTOM_PARAMETERS > Enums > E_VALUE_INDEX and select the

index number of the input (0 to ?):

Multi-line 300 CODESYS guidelines 4189341175C EN Page 84 of 90

•
• The Value_index value must be unique for the Parameter type/set in your application.

8. Select OK.
9. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Update input:

•
• The update input is bi-directional and will return your command to 0 after update.

Multi-line 300 CODESYS guidelines 4189341175C EN Page 85 of 90

6.2.4 Setup write function block

The Write Function Block has the same parameters for all three block types, value-index, value and update.

Follow these steps to add a Parameter Write Function block to your application:

1. Drag a Box from the ToolBox to the implementation part of the working area:

•

2. Select ??? in the Box and then select to open the Input Assistant window:

•
3. Go to Categories > Functionblocks > MULTILINE_300_CUSTOM_PARAMETERS and select the value write block you

need:

•
4. Select OK.
5. Press Return on your keyboard two times to open the Auto Declare window for the function block. Select OK to declare

the variables as they are shown:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 86 of 90

•
6. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Value_index input:

•
7. Go to Categories > Variables > MULTILINE_300_CUSTOM_PARAMETERS > Enums > E_VALUE_INDEX and select the

index number of the input (0 to 49):

Multi-line 300 CODESYS guidelines 4189341175C EN Page 87 of 90

•
• The Value_index value must be unique for the Parameter type/set in your application.

8. Select OK.
9. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Value input:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 88 of 90

•
10. Drag an Input from the ToolBox to the implementation part of the working area and connect it to the Update input:

•

Multi-line 300 CODESYS guidelines 4189341175C EN Page 89 of 90

• The update input is bi-directional and will return your command to 0 after update.

6.3 Assign a CODESYS I/O function in the controller

To see the custom CODESYS I/Os in the controller:

1. The POU containing the I/O function block must be added to MainTask in the project tree.
2. The program must be downloaded to the controller.
3. The program must have run at least once.

More information
See ML 300 CODESYS projects, Download the application to the controller for more information about how to
download and run your program on an ML 300 controller.

Follow these steps to assign the CODESYS I/O function block to a controller terminal:
1. Use PICUS to log on to the ML 300 controller to which the I/O is assigned, and go to Configure > Input/output:

Multi-line 300 CODESYS guidelines 4189341175C EN Page 90 of 90

	Contents
	Introduction
	About this document
	Document overview
	Software versions
	Technical support

	Warnings and safety
	CustomLogic not available
	Recommendations for data security

	Legal information
	Disclaimer
	Trademark
	Copyright

	Get started with CODESYS
	Multi-line 300 CODESYS functions
	Multi-line 300 CODESYS functions

	Software requirements
	Software requirements

	Download
	Downloading the DEIF CODESYS software package
	DEIF CODESYS software package contents
	Download the DEIF CODESYS library package
	DEIF CODESYS library package contents

	Install
	Install CODESYS Runtime on the controller
	Install the device description in CODESYS
	Install the ML 300 controller libraries in CODESYS

	ML 300 CODESYS projects
	Introduction
	Introduction

	Create a new project
	Create a project file
	CODESYS layout
	Add the Multi-line 300 libraries to your application

	Add the ML 300 function block
	Introduction
	Create a continuous function chart program
	Add the ML 300 Read-Write function block
	Add the ML 300 Read and ML 300 Write function blocks
	ML300 function blocks' execution position
	ML 300 function blocks' inputs and outputs

	Communication with the controller
	Introduction
	Create a local gateway
	Connect to the controller

	Download the application to the controller
	Pre-compile the application
	Generate and download the application
	Start and stop the application

	Monitor the application
	Introduction
	Monitor in the working area
	Monitor in watch windows
	Write and force variables

	Function blocks
	Version function block
	Introduction
	Add a version function block
	Card_info function block overview
	Software_info function block overview
	Versions function block overview

	I/O function block
	Introduction
	Add an I/O function block
	Assign a CODESYS I/O function in the controller

	Standard ML 300 functions
	Introduction
	Add standard ML 300 functions function blocks
	Function conflicts
	Alarm function block overview
	Parameter function block overview

	Extended ML 300 controller functionality
	Create a multiple ring network
	Introduction
	Requirements
	Configure a Top Unit controller

	Inter-controller communication
	Introduction
	Add an ICC output function block
	Add an ICC input function block

	Additional libraries
	Introduction
	Custom parameters
	Setup BOOL function block
	Setup float/integer function block
	Setup read function block
	Setup write function block

	Assign a CODESYS I/O function in the controller

